Troponin I phosphorylation and myofilament calcium sensitivity during decompensated cardiac hypertrophy.
نویسندگان
چکیده
We have measured myocyte cell shortening, troponin-I (Tn-I) phosphorylation, Ca2+ dependence of actomyosin adenosinetriphosphatase (ATPase) activity, adenosine 3',5'-cyclic monophosphate (cAMP) levels, and myofibrillar isoform expression in the spontaneously hypertensive rat (SHR) during decompensated cardiac hypertrophy (76 wk old) and in age-matched Wistar-Kyoto rat (WKY) controls. The decreased inotropic response to β-adrenergic stimulation previously observed in myocytes from 26-wk-old SHR was further reduced at 76 wk of age. In response to β-adrenergic stimulation, Tn-I phosphorylation was greater in the 76-wk-old SHR than in the WKY, although cAMP-dependent protein kinase A (PKA)-dependent Tn-I phosphorylation in the SHR did not increase with progression from compensated (26 wk) to decompensated (76 wk) hypertrophy. We also observed a dissociation between the increased PKA-dependent Tn-I phosphorylation and decreased cAMP levels in the 76-wk-old SHR versus WKY during β-adrenergic stimulation. Baseline Tn-I phosphorylation was significantly reduced in 76-wk-old SHR versus WKY and was associated with decreased basal cAMP levels and increased Ca2+ sensitivity of actomyosin ATPase activity. The change in myofilament Ca2+ sensitivity during β-adrenergic stimulation in the 76-wk-old SHR (0.65 pCa units) was over twofold greater than in the 76-wk-old WKY (0.30 pCa units). We also determined whether embryonic troponin T isoforms were reexpressed in decompensated hypertrophy and observed significant reexpression of the embryonic cardiac troponin T isoforms in the 76-wk-old SHR. The significant decrease in Ca2+ sensitivity with β-adrenergic stimulation in 76-wk-old SHR may contribute to the severely impaired inotropic response during decompensated hypertrophy in the SHR.
منابع مشابه
p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I.
Phosphorylation of myofilament proteins by kinases such as cAMP-dependent protein kinase and protein kinase C has been shown to lead to altered thin-filament protein-protein interactions and modulation of cardiac function in vitro. In the present study, we report that a small GTPase-dependent kinase, p21-activated kinase (PAK), increases the calcium sensitivity of Triton-skinned cardiac muscle ...
متن کاملStaurosporine Inhibits Frequency-Dependent Myofilament Desensitization in Intact Rabbit Cardiac Trabeculae
Myofilament calcium sensitivity decreases with frequency in intact healthy rabbit trabeculae and associates with Troponin I and Myosin light chain-2 phosphorylation. We here tested whether serine-threonine kinase activity is primarily responsible for this frequency-dependent modulations of myofilament calcium sensitivity. Right ventricular trabeculae were isolated from New Zealand White rabbit ...
متن کاملDesensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins.
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common genetic disorder caused mainly by mutations in sarcomeric proteins and is characterized by maladaptive myocardial hypertrophy, diastolic heart failure, increased myofilament Ca(2+) sensitivity, and high susceptibility to sudden death. We tested the following hypothesis: correction of the increased myofilament sensitivity can delay or prev...
متن کاملIn vivo phosphorylation of cardiac troponin I by protein kinase Cbeta2 decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts.
Recently, it has been reported that the protein kinase C (PKC) beta isoform plays a critical role in the development of hypertrophy and heart failure. The purpose of the present study was to clarify the mechanism by which activation of PKCbeta led to depressed cardiac function. Thus, we used a PKCbeta2 overexpressing mouse, an animal model of heart failure, to examine mechanical properties and ...
متن کاملMolecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study.
Mutations in cardiac troponin C (D75Y, E59D, and G159D), a key regulatory protein of myofilament contraction, have been associated with dilated cardiomyopathy (DCM). Despite reports of altered myofilament function in these mutants, the underlying molecular alterations caused by these mutations remain elusive. Here we investigate in silico the intramolecular mechanisms by which these mutations a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 274 2 شماره
صفحات -
تاریخ انتشار 1998